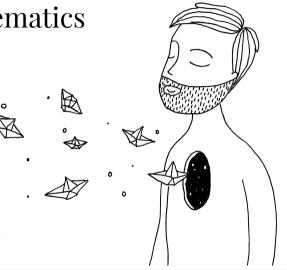
# 4509 - Bridging Mathematics

Differentiation

PAULO FAGANDINI



The function  $f: \mathbb{R} \to \mathbb{R}$  is **differentiable** in  $\hat{x} \in \mathbb{R}$  if the limit

$$\lim_{h\to 0}\frac{f(\hat{x}+h)-f(\hat{x})}{h}$$

exists. If it does, we denote it as  $\frac{df(\hat{x})}{dx}$ , or  $f'(\hat{x})$ , or  $f_x(\hat{x})$ .



The function  $f: \mathbb{R}^n \to \mathbb{R}$  is **partially differentiable** in  $\hat{x} = (\hat{x}_1, \hat{x}_2, \dots, \hat{x}_n)$  with respect to  $x_i$  if the limit

$$\lim_{h\to 0} \frac{f(\hat{x}_1,\ldots,\hat{x}_j+h,\hat{x}_{j+1},\ldots,\hat{x}_n)-f(\hat{x}_1,\ldots,\hat{x}_j,\hat{x}_{j+1},\ldots,\hat{x}_n)}{h}$$

exists. If it does, we denote it as  $\frac{\partial f(\hat{x})}{\partial x_i}$ , or  $f_{x_j}(\hat{x})$ .



If  $f: \mathbb{R}^n \to \mathbb{R}$  is partially differentiable in each coordinate of  $\hat{x}$ , then its **gradient** is defined as:

$$abla f(\hat{x}) = \left(egin{array}{c} rac{\partial f(\hat{x})}{\partial x_1} \ dots \ rac{\partial f(\hat{x})}{\partial x_i} \ dots \ rac{\partial f(\hat{x})}{\partial x_n} \end{array}
ight)$$

The gradient indicates the direction of steepest ascent.



If  $f: \mathbb{R}^n \to \mathbb{R}^m$  is partially differentiable in each coordinate of  $\hat{x}$ , then the **Jacobian** matrix (also denoted  $\nabla f$ , and Df) is defined as:

$$\nabla f(\hat{x}) = \begin{pmatrix} \frac{\partial f_1(\hat{x})}{\partial x_1} & \frac{\partial f_1(\hat{x})}{\partial x_2} & \dots & \frac{\partial f_1(\hat{x})}{\partial x_n} \\ \frac{\partial f_2(\hat{x})}{\partial x_1} & \frac{\partial f_2(\hat{x})}{\partial x_2} & \dots & \frac{\partial f_2(\hat{x})}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m(\hat{x})}{\partial x_1} & \frac{\partial f_m(\hat{x})}{\partial x_2} & \dots & \frac{\partial f_m(\hat{x})}{\partial x_n} \end{pmatrix}$$

where in this case  $f_i(\hat{x})$  represents the coordinate i of  $f(\hat{x})$ .



The **higher order derivative** is defined recursively, consider the derivative of f, of order n, on  $\hat{x}$  as,

$$f^{(n)}(\hat{x}) = (f^{(n-1)}(\hat{x}))'$$
  
$$f^{(1)}(\hat{x}) = f'(\hat{x})$$

# Definition

The second partial derivative is defined as:

$$\frac{\partial^2 f(\hat{x})}{\partial x_i \partial x_i} := \frac{\partial}{\partial x_i} \left( \frac{\partial f(\hat{x})}{\partial x_i} \right)$$

It is well defined if both limits exist.



Let f be a differentiable function for any  $x \in J$ , then we say f is **differentiable in** J. If f' is well defined and continuous on J, we say that f is **continuously differentiable** on J or  $C^1$ . If f' is differentiable at every  $\hat{x} \in J$  we say f is **twice differentiable**, and if f'' is continuous, we say that f is **twice continuously differentiable** or  $C^2$  in J.

In general, if  $f \in C^n$  then we say that f is n-times differentiable, and  $f^{(n)}$  is continuous.



The **Hessian** of a function f is the matrix with the second partial derivatives of f.

$$H(f,\hat{x}) = \begin{pmatrix} \frac{\partial^2 f(\hat{x})}{(\partial x_1)^2} & \frac{\partial^2 f(\hat{x})}{\partial x_2 \partial x_1} & \cdots & \frac{\partial^2 f(\hat{x})}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f(\hat{x})}{\partial x_2 \partial x_1} & \frac{\partial^2 f(\hat{x})}{(\partial x_2)^2} & \cdots & \frac{\partial^2 f(\hat{x})}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f(\hat{x})}{\partial x_n \partial x_1} & \frac{\partial^2 f(\hat{x})}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f(\hat{x})}{(\partial x_n)^2} \end{pmatrix}$$



## Conjecture

Let  $f, g : \mathbb{R} \to \mathbb{R}$  differentiable, it holds that:

- 1. (f+g)'(x) = f'(x) + g'(x)
- 2.  $(f \cdot g)'(x) = f'(x)g(x) + f(x)g'(x)$
- 3.  $\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) f(x)g'(x)}{g(x)^2}$
- 4. If h(x) = f(g(x)), then  $h'(x) = f'(g(x)) \cdot g'(x)$ . The glorious **chain rule!**.
- 5. Let  $f: \mathbb{R}^n \to \mathbb{R}$  and  $g: \mathbb{R}^k \to \mathbb{R}^n$ . Now let  $h: \mathbb{R}^k \to \mathbb{R}$  as h(x) = f(g(x)), with  $x = (x_1, \dots, x_j, \dots, x_k)$ .

$$\frac{\partial h}{\partial x_j} = \sum_{i=1}^n \frac{\partial f(x)}{\partial (g(x))_i} \frac{\partial (g(x))_i}{\partial x_j}$$

With  $(g(x))_i$  the coordinate i of the vector  $g(x) \in \mathbb{R}^n$ .



# Theorem (Implicit Function)

Let  $f: \mathbb{R}^n \to \mathbb{R}$  a function such that f(z) = 0, with  $z = (z_1, z_2, ..., z_n)$ . If  $f_{x_1}(z) \neq 0$ , then there exists a differentiable function  $g: \mathbb{R}^{n-1} \to \mathbb{R}$  such that  $z_1 = g(z_2, z_3, ..., z_n)$ , and  $f(g(x_2, ..., x_n), x_2, ..., x_n) = 0$  for any  $(x_2, ..., x_n)$  near  $(z_2, ..., z_n)$ .



# Theorem (Mean Value)

Consider a differentiable function  $f:[a,b] \to \mathbb{R}$ , then there is  $c \in [a,b]$  such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$



# Conjecture

Let  $f: \mathbb{R} \to \mathbb{R}$  be differentiable. f is strictly increasing if and only if f'(x) > 0 for any  $x \in \mathbb{R}$ .



Given  $x_0 \in \mathbb{R}$  and  $f : \mathbb{R} \to \mathbb{R}$  differentiable (at least k times). The k-order Taylor series at  $x_0$  is:

$$T(x_0, f)(x) := \sum_{i=0}^{k} \frac{f^{(i)}(x_0)}{i!} (x - x_0)^i$$



# Conjecture (l'Hôpital's rule)

Let f and g be differentiable functions such that one of the following two conditions hold:

- $\blacksquare \lim_{x \to x_0} f(x) = 0 \text{ and } \lim_{x \to x_0} g(x) = 0, \text{ or }$
- $\blacksquare \lim_{x \to x_0} |f(x)| = \infty \text{ and } \lim_{x \to x_0} |g(x)| = \infty.$

Then 
$$\lim_{x\to x_0} \frac{f(x)}{g(x)} = \lim_{x\to x_0} \frac{f'(x)}{g'(x)}$$
.

